О студии Виртуальные 3D туры Разработка сайтов Цифровое фото

Глоссарий по цифровой фотографии

На этой странице опубликован небольшой глоссарий терминов и определений имеющих прямое или косвенное отношение к цифровой фотографии . В основном все определения взяты из Википедии (свободная энциклопедия), за что мы выражаем ее авторам ОГРОМНОЕ спасибо.

Со временем список терминов собранных в нашем глоссарии будет расширяться.

На нашем сайте также имеется аналогичный глоссарий терминов относящихся к разработке сайтов.

Цифровая фотография

Цифрова́я фотогра́фия — фотография, результатом которой является изображение в виде массива цифровых данных — файла, а в качестве светочувствительного материала применяется электронное устройство — матрица.

Изображение, представленное в цифровом виде, предназначено для дальнейшей обработки на компьютере (или на другой цифровой технике). Поэтому цифровая фотография часто относится к области информационных технологий.

Помимо собственно цифрового оборудования, в сферу цифровой фотографии оказываются традиционно включены:
Аналоговые компоненты цифровых аппаратов (например, матрица содержит аналоговые части);
Теле- и видеокамеры, некоторые факсимильные и копирующие аппараты, использующие для получения изображения твердотельные матрицы, но передающие и записывающие аналоговый сигнал;

Достижения в области технологий и производства фотосенсоров, оптических систем позволяют создавать цифровые фотокамеры, которые вытесняют плёночную фототехнику из большинства сфер применения, хотя приверженцы плёнки среди профессиональных фотографов остаются. Кроме того, создание встроенных в сотовые телефоны, карманные компьютеры цифровых миниатюрных фотоаппаратов создало новые сферы применения фотографии.

 

Панорамная фотография  

Панорамная фотография — обобщенное название всего, что связано со съёмкой панорам. Под этим термином подразумевают одно из:

  • фотография с большим углом обзора, превышающим возможности обычных объективов, а зачастую и больше 180 градусов;
  • обычная фотография «длинного» формата, с соотношением сторон 1x2, 1x3 и больше;
  • фотография, полученная путем технологии сборки панорам из отдельных кадров (при этом она может иметь небольшой угол обзора и стандартное соотношение сторон).

В зависимости от области применения панорамы могут быть планарными и виртуальными.
Планарными — проецируются на плоскость и могут быть целиком воспроизведены на бумаге или мониторе
Виртуальными — предназначены для показа на компьютере с помощью специального программного обеспечения, позволяющего зрителю «крутить головой», глядя на разные части пространства, окружавшего фотографа при съёмке. Такие панорамы могут быть сферическими (покрывают 360x180 градусов и позволяют зрителю смотреть не только влево-вправо, но и под ноги и над головой) и цилиндрическими (можно смотреть только влево-вправо).

Планарные панорамы могут быть представлены в одной из распространенных проекций, пришедших из картографии.
Прямолинейная (rectlinear, она же flat, плоская и т. д.) панорама — панорама, в которой проекции сохраняют прямые линии прямыми. Угол обзора таких панорам ограничен, поскольку при увеличении угла начинается сильное растяжение объектов по краям, деформации, связанные с боковым видом объектов и т. д. Разумный угол по горизонтали и вертикали — порядка 90 градусов, максимальный у клеенных панорам зависит от программы сборки и редко выходит за 130 градусов. Прямолинейную панораму можно получить:

  • обрезкой кадра, не имеющего выраженной дисторсии;
  • склейкой кадров, полученных с помощью шифт-объектива (используется для профессиональной архитектурной съёмки) и пресс-камер (камер с гармошкой), или обычных, посредством линейного перемещения камеры;
  • панорамным фотоаппаратом с невращающимся объективом.
 

Стереоизображение

Стереоизображе́ние — картина или видеоряд, использующий два отдельных изображения, позволяющих достичь стереоэффекта.
Чтобы создать стереоизображение в программе трёхмерного моделирования, надо сделать двойной рендеринг сцены — с двух камер, соответствующих глазам наблюдателя.

Методы демонстрации объёмного изображения

  • Для создания и просмотра стереоизображения используются различные устройства и методы:
    Метод параллельного взгляда позволяет посмотреть полноцветную стереокартинку без наличия какого-либо оборудования, стереоэффект достигается за счет сведения глаз дальше плоскости изображения. Способ пригоден только для просмотра относительно небольших изображений размером 60—70 мм каждое, что обусловлено межзрачковым расстоянием человека. "Вольностей" с масштабированием изображения способ тоже не допускает.
  • Метод перекрёстного взгляда (cross-eye) аналогичен предыдущему, но глаза сводятся перед изображением ("на переносице"). Предыдущий способ, при котором глаза смотрят как бы дальше изображения, предпочтительнее, поскольку вызывает меньшее напряжение глаз. С одной стороны, кросс-пара может быть произвольного размера и произвольно отмасштабирована при просмотре, с другой стороны — мнимое изображение возникает между экраном и наблюдателем, что ограничивает размеры изображённого объекта либо превращает его в "кукольную копию".
  • Метод зеркального разделения изображений (mirror split) позволяет обойтись без напряжения взгляда, применяя зеркало для разделения полей обзора. Стереокартинка для данного метода также, как и для предыдущего, представляет собой левый и правый кадры, только один из них зеркально перевёрнут. Зеркало ставится перпендикулярно лицу, вплотную к переносице, и перпендикулярно же картинке, в место разделения левого и правого кадра.[1] Обычно левый кадр зеркально отражён относительно истинного положения объекта. В этом случае нужно смотреть обоими глазами направо: правый глаз смотрит на правую картинку, левый через зеркало — на левую. Плавно подстраивая зеркало, нужно совместить изображения так, чтобы возник стереоэффект. Достоинство данного метода в том, что используя лишь подручные материалы, можно получить полноцветное стереоизображение. Недостаток в том, что приходится размещать лицо близко к экрану либо использовать очень длинное зеркало. Для больших изображений нужны широкие зеркала, что в сочетании может создать довольно громоздкую конструкцию.
  • Анаглиф-очки — разноцветные очки, вместо линз у которых вставлены светофильтры цветов CMY. Дешёвый, но достаточно эффективный метод, физически он не обеспечивает правильную передачу цветного стереоизображения, однако нервная система довольно хорошо интерпретирует его. Время адаптации около 30 секунд, после длительного использования на пропорциональный период нарушается цветовосприятие.
  • Затворные стереоочки. На экран проецируется то картинка для левого глаза, то для правого. Соответственно, очки открывают обзор то левому глазу, то правому. Применяются в 3D-кино формата XpanD. Изредка используются в компьютерных играх, так как позволяют задействовать обычный ЭЛТ-монитор (но с мощной видеоплатой — нагрузка на неё повышается вдвое). ЖК-монитор годится не каждый — истинная частота обновления у большинства из них не превышает 30..75 Гц (имеется в виду фактическое время перестроения ЖК-цепочек, а не частота развёртки). Примером такой технологии является nVIDIA 3D Vision. Для использования 3D Vision нужен ЖК, плазменный или OLED-монитор с частотой развёртки 100 Hz или выше, видеокарта от nVIDIA с 3D Vision и специальные очки. Начиная с 2009—2010 годов в мире началось массовое производство телевизоров, работающих по этому принципу. В апреле 2010 года в России началось конвейерное производство 3D-телевизоров Samsung в Калужской области. Зритель надевает ЖК-очки, которые поочерёдно (с частотой 60 Гц) затемняют левый и правый глаза человека, телевизор при этом показывает 120 изображений в секунду.
  • Поляризованные стереоочки. Сами очки несколько дороже анаглифных и требуют прецизионного спецоборудования, вдобавок киноэкран должен быть алюминированным, чтобы не было деполяризации света. Однако (кроме понижения яркости и дороговизны) выраженных недостатков не имеют. Обычно применяются в стереокинотеатрах. Имея два схожих проектора, экран и некоторое количество поляризационной плёнки от неисправного ЖК-монитора, можно самостоятельно воспроизвести в большей или меньшей степени такой стереоэффект.
    • Основанные на линейной поляризации (дешевле, но при наклонах головы стереоэффект теряется). Применяется в 3D-кино формата IMAX 3D.
    • Основанные на круговой поляризации (дороже). Применяется в 3D-кино формата RealD Cinema.
  • Стереоочки с многополосными фильтрами — обеспечивают стереоэффект за счёт того, что линзы пропускают лишь узкие полосы красного, зелёного и синего. Проекционное оборудование относительно дёшево, но сами стереоочки дороги. Применяется в 3D-кино формата Dolby 3D.
    Стереоскоп — оптический прибор с двумя окулярами; обычно используется для просмотра стереослайдов, но не составляет сложности вложить туда КПК или коммуникатор c продолговатым экраном высокого разрешения (например, Nokia E90).
  • Стереодисплей — оптический инструмент, с помощью которого два плоскостных изображения комбинируются таким образом, что наблюдатель получает впечатление рельефного предмета.
    Виртуальный шлем (VR HMD) — шлем, который показывает для каждого глаза отдельные изображения. В результате чего получается стереоэффект.

Для просмотра трехмерных данных на компьютере в стереорежиме необходимо воспользоваться стереодрайверами. Самым большим перечнем поддерживаемых 3D-программ, игр и стереооборудования обладают стереодрайвера от NVidia.

В настоящее время альтернативой стереофотографии стала 3D-фотография, позволяющая получить по-настоящему объемное изображение предмета.

 

Диафрагма

Диафра́гма (от греч. διάφραγμα — перегородка) в фототехнике — устройство объектива фотокамеры, позволяющее регулировать относительное отверстие, то есть изменять количество проходящего через объектив света, что определяет соотношение яркости оптического изображения фотографируемого объекта к яркости самого объекта, а также устанавливать необходимую глубину резкости.

Является разновидностью апертурной диафрагмы оптической системы. Слово «апертура», как правило, является синонимом слова «диафрагма», разница — под «апертурой» подразумевается только геометрическое значение, а под «диафрагмой» также и механическое устройство регулирования апертуры.

Значения диафрагмы

Стандартные значения диафрагмы ( относительного отверстия) основаны на увеличении или уменьшении освещённости оптического изображения в два раза: 1/0,7; 1/1; 1/1,4; 1/2; 1/2,8; 1/4; 1/5,6; 1/8; 1/11; 1/16; 1/22; 1/32; 1/45; 1/64 и равны отношению диаметра входного отверстия объектива к его фокусному расстоянию. На большинстве фотоаппаратов и объективов указываются только знаменатели значений диафрагм, которые называются диафрагменными числами (5,6; 8; 11..), которые равны отношению фокусного расстояния объектива к диаметру его входного отверстия. Диафрагменные числа, соответствующие максимальному светопропусканию, то есть геометрической светосиле объектива, не всегда входят в стандартный ряд значений из-за его технических возможностей, так например, 1,9; 3,2; 4,5 не доходят до стандартных значений 1,4; 2,8; 4,0. Обычно перед значениями диафрагмы и диафрагменных чисел ставится латинская буква F.

Численное значение диафрагмы определяет следующие элементы фотографического процесса:

  • экспозиция — с уменьшением отверстия на одну ступень поток света уменьшается вдвое, что требует увеличения вдвое времени выдержки, чувствительности матрицы или плёнки или светосилы оптической системы для сохранения той же экспозиции;
  • глубина резкости — чем меньше отверстие, тем больше глубина резкости;
  • дифракция — чрезмерное закрытие диафрагмы приводит к падению резкости изображения;
  • аберрации — чем меньше отверстие, тем ниже уровень аберраций и выше резкость, но только до определённого предела, далее резкость опять падает из-за влияния дифракции;
  • виньетирование — чем меньше отверстие, тем меньше виньетируется фотография. Виньетирование максимально при полностью открытой диафрагме и, обычно, становится малозаметным при закрытии диафрагмы до 2х раз.
 

Выдержка

Вы́держка — интервал времени, в течение которого свет воздействует на участок светочувствительного материала или светочувствительной матрицы для сообщения ему определённой экспозиции.

Вре́мя экспони́рования — интервал времени, в течение которого затвор фотоаппарата открыт для получения кадра (экспонирования кадра), то есть в течение которого свет воздействует на светочувствительный материал (светочувствительную матрицу) в пределах всего поля изображения.

Если доступ света начинается и прекращается одновременно по всему полю изображения (например, центральным затвором), время экспонирования совпадает с выдержкой. При использовании шторного или обтюраторного затвора время экспозиции может многократно превышать выдержку. Например, на фотоаппаратах «ФЭД», «Зоркий», «Зенит» со шторным затвором все выдержки 1/60, 1/125, 1/250, 1/500, 1/1000 отрабатываются при времени экспонирования 1/30 секунды. Это, в частности, приводит к эффекту временно́го параллакса.

Шкала выдержек

Во многих современных фотоаппаратах используется стандартная шкала выдержек в долях секунды, причем для коротких выдержек (меньше 1 секунды) числитель опускается, и выдержка описывается знаменателем:

  • 8000 (1/8000 c)
  • 4000 (1/4000 c)
  • 2000 (1/2000 c)
  • 1000 (1/1000 c)
  • 500 (1/500 с)
  • 250 (1/250 с)
  • 125 (1/125 с)
  • 60 (1/60 с)
  • 30 (1/30 с)
  • 15 (1/15 с)
  • 8 (1/8 с)
  • 4 (1/4 с)
  • 2 (1/2 с)
  • 1 с
  • 2 с
  • B — «Bulb». Ручная выдержка (затвор открыт до тех пор, пока нажата кнопка спуска затвора или не поступит сигнал с пульта дистанционного управления)

Чем больше знаменатель выдержки, тем меньше экспозиция при фиксированном относительном отверстии диафрагмы, и тем темнее получается фотография. Для компенсации необходимо повышать чувствительность или изменять диафрагму.

Кроме экспозиции, выдержка влияет на фиксацию движущихся объектов: длинные выдержки (обычно более 1/30 с) позволяют добиться эффекта «видимого движения», при котором объект превращается в размытые полосы. Короткие выдержки (обычно короче 1/500 с) дают «стоп-кадр», четко фиксируя объект.

Длинные выдержки часто приводят к эффекту «шевеленки», появляющемуся из-за дрожания рук фотографа. Фотографии при этом получаются размытыми. При фотографировании статичных объектов от «шевеленки» можно избавиться, используя штатив или, до определенной степени, специальные объективы с подавлением вибрации.

При применении не имеющих такого оборудования фотоаппаратов и объективов, для отсутствия «шевелёнки» следует соблюдать эмпирическое правило: знаменатель выдержки должен быть больше числового значения эквивалентного фокусного расстояния объектива, приведённого к 35 мм плёнке. Так, снимая объективом «Юпитер-37А» на 35 мм плёнку с фокусным расстоянием 135 мм, следует выставлять выдержку не длиннее 1/250 с, чтобы быть уверенным в полученном результате. При применении объектива ЗМ-5А (500 мм фокусное расстояние) на цифровом аппарате с матрицей APS-C получаем эквивалентное фокусное расстояние 750 мм и необходимую выдержку не длиннее 1/1000 с.

Если мощность излучения за время экспозиции переменна, то различают полную выдержку и эффективную выдержку (эффективная меньше полной). Эффективная выдержка — промежуток времени, за который на фотографический слой упало бы такое же количество света, что и за полную выдержку, если бы мощность излучения оставалась постоянной и равной её максимальному значению. Если изменение освещённости на слое связано с типом применяемого в фотографической камере затвора (например, центрального затвора, лепестки которого располагаются в зрачке объектива или вблизи него), то отношение эффективной выдержки к полной выдержке называется коэффициентом полезного действия затвора. КПД затвора тем больше, чем больше выдержка и меньше относительное отверстие объектива.

Произведение выдержки на освещённость называется экспозицией или количеством освещения. Одна и та же экспозиция может давать несколько различный фотографический эффект в зависимости от соотношения освещённости и времени выдержки, подобное фотохимическое явление называется явлением невзаимозаместимости.

 

Баланс белого

Бала́нс бе́лого цве́та (также кратко называемый баланс белого) — один из параметров метода передачи цветного изображения, определяющий соответствие цветовой гаммы изображения объекта цветовой гамме объекта съёмки.

Обычно употребляется как изменяемая характеристика фотографического процесса, фотоматериала, систем цветной печати и копирования, телевизионных систем и устройств воспроизведения графической информации (например, мониторов).

Баланс белого, Коррекция баланса белого, настройка белой точки или Цветокоррекция — технология коррекции цветов изображения объекта до тех цветов, в которых человек видит объект в естественных условиях (объективный подход), или до тех цветов, которые представляются наиболее привлекательными (субъективный подход).

Теоретические нюансы

Человек при любом освещении видит объект (заведомо) белого цвета как белый, потому что необходимую цветокоррекцию автоматически проводят человеческий глаз и мозг.

Если источник освещения имеет непрерывный спектр тепловой природы, то этому спектру можно поставить в соответствие некоторую температуру, до которой надо нагреть абсолютно чёрное тело, чтобы его излучение имело такой же спектральный состав. Эта температура получила название цветовой температуры. Цветовую температуру измеряют в Кельвинах.

Пламя свечи имеет цветовую температуру около 1800 К, лампы накаливания — 2500 К, восход солнца — 3800 К, лампа-вспышка — 5500 К, голубое безоблачное небо в летний день — 11000 К и выше.

Корректное определение цветовой температуры по спектру источника для флуоресцентных, многих ртутных и низкотемпературных газоразрядных ламп, люминофорных источников света дать невозможно, так как значительная доля излучённой энергии приходится на «линейчатую» часть спектра. Так как в природе такое освещение встречается крайне редко, глаз человека не имеет эффективных средств адаптации к таким источникам. Однако и в этих случаях мозг создаёт «ощущение белого цвета» для соответствующих объектов (например, снега или листа белой бумаги). В таких случаях говорят о «псевдобелом» источнике света и определяют его «цветовую температуру» путём визуального сравнения с образцами.

Наиболее сложная ситуация для «баланса белого» — наличие двух и более разных источников с различной цветовой температурой. В этом случае глаз и мозг человека всё равно «увидят» правильные цвета предметов, однако и плёнка, и телекамера, и цифровой фотоаппарат воспроизведут часть предметов как «цветные».

Например, если мы выставили баланс белого в цифровом аппарате на «дневной свет», то часть кадра, освещённая лампами накаливания, будет выглядеть жёлтой, флуоресцентными лампами — зелёной, розовой или фиолетовой (для разных типов ламп), на сцене, освещённой безоблачным небом, тени будут голубыми.

Зрение человека

Американцы Давид Хьюбл (David H.Hubel) и Торстен Вайзел (Torsten N.Wiesel) получили Нобелевскую премию 1981 года за исследование зрения человека. Они доказали, что глаза человека выдают в мозг информацию вовсе не о красном (R), зелёном (G) и синем (B) цветах (теория цвета Юнга-Гельмгольца, 1802 г.). Согласно теории о трех оппонентных процессах (автор — немецкий физиолог Эвальд Геринг, 1834—1918), мозг получает информацию о разнице яркости белого и черного (Yмах и Yмин), о разнице зелёного и красного цветов (G − R), о разнице синего и жёлтого цветов (B − yellow), а жёлтый цвет есть сумма красного и зелёного цветов (yellow = R + G), где R, G и B — яркости цветовых составляющих: красного, зеленого и синего.

Имеем систему уравнений:
Кч-б = Yмах − Yмин
Кgr = G − R
Кbrg = B − R − G

где Кч-б, Кgr, Кbrg — функции коэффициентов баланса белого для любого освещения.

Практически это выражается в том, что люди воспринимают цвет предметов одинаково при разных источниках освещения (Цветопостоянство, цветовая адаптация).

Цветовая модель LAB — попытка представить сочетания цветов в модели, максимально приближенной к человеческому восприятию.

 

Размер матрицы

Физические размеры фотосенсоров определяются размером отдельных пикселей матрицы, которые в современных фотосенсорах имеют величину 0,005-0,006 мм. Чем крупнее пиксель, тем больше его площадь и количество собираемого им света, поэтому тем выше его светочувствительность и лучше отношение сигнал/шум (в плёночной фотографии шумы называются «вуаль»). Необходимое разрешение деталей фотографии определяет общее количество пикселей, которое в современных фотоматрицах достигает десятков миллионов пикселей (Мегапикселей), и тем задаёт физические размеры фотоматрицы.

  • Законы оптики определяют зависимость ГРИП от физического размера матрицы. Если сфотографировать тремя фотоаппаратами с разным физическим размером матрицы одну и ту же сцену с одним и тем же углом зрения и одним и тем же значением диафрагмы на объективах, и изучить результат (файл на компьютере, распечатку с принтера) в одинаковых условиях, то ГРИП на снимке, сделанном фотоаппаратом с наименьшей матрицей, будет наибольшей (больше предметов в кадре будет показано резко), а фотоаппарат с наибольшей матрицей покажет наименьшую ГРИП (предметы не в зоне резкости будут сильнее размыты).
  • Размеры фотосенсоров чаще всего обозначают как «тип» в виде дробных частей дюйма (например, 1/1.8" или 2/3"), что фактически больше реального физического размера диагонали сенсора. Эти обозначения происходят от стандартных обозначений размеров трубок телекамер в 1950-х годах. Они выражают не размер диагонали самой матрицы, а внешний размер колбы передающей трубки. Инженеры быстро установили, что по различным причинам диагональ полезной площади изображения составляет около двух третей диаметра трубки. Это определение стало устоявшимся (хотя и должно было быть давно отброшено). Не существует чёткой математической взаимосвязи между "типом" сенсора, выраженном в дюймах, и его фактической диагональю. Однако, в грубом приближении, можно считать, что диагональ составляет две трети типоразмера.

размер матрицы

 

Canon EOS 1100D

Canon EOS 1100D — цифровой однообъективный зеркальный фотоаппарат серии EOS компании Canon. Фотоаппарат имеет сенсор с кроп-фактором 1,6 и позволяет использовать предназначенные для сенсоров такого размера объективы EF-S. Фотоаппарат анонсирован 7 февраля 2011 года, планируемая дата поступления в продажу — конец марта. Заменил модель Canon EOS 1000D.

Canon EOS 1100D

Canon EOS 1100D — самый доступный из предлагающихся зеркальных фотоаппаратов марки «Кэнон». Вместе с фотоаппаратом был представлен новый объектив EF-S 18-55mm f/3.5-5.6 IS II, который заменит Canon EF-S 18-55mm f/3.5-5.6 IS.

Отличия от 1000D

Корпус и механика

  • Увеличен размер выступа под правую руку.
  • Более мягкий и приятный на ощупь пластик корпуса
  • Изменено расположение кнопок.
  • Добавлены кнопки видеосъёмки и быстрого доступа к настройкам; убраны кнопки Picture Style и выбора режима экспозамера; кнопка выбора чувствительности перенесена с верхней панели на заднюю, а кнопка открытия вспышки на её место.
  • Отсутствие кнопки проверки глубины резкости.
  • Увеличены размеры и немного уменьшен вес (на 5 г по методике CIPA, с картой памяти и батареей).

  • Электроника

  • Сенсор с разрешением 12 млн пикселов вместо 10.
  • Процессор DIGIC 4 вместо DIGIC III.
  • Возможность видеосъёмки.
  • Система автофокуса с 9 точками вместо 7
  • Система экспозамера iFCL (пришедшая из старшей модели EOS 7D)(63-зонный экспозамер)
  • Более широкий диапазон чувствительности (до ISO 6400 вместо 1600)
  • ЖК-дисплей с диагональю 2,7 дюйма вместо 2,5 и увеличенными углами обзора.
  • Ведущее число вспышки уменьшилось с 13 до 9,2.

Интерфейс и настройки

  • Возможность съёмки с пропорциями 4:3, 16:9 и 1:1.

Прочее

  • Объектив с оптической стабилизацией изображения.
  • Отсутствие в ассортименте компании совместимой батарейной ручки.
 

Экспозиция

Экспози́ция — произведение освещённости светочувствительного слоя матрицы (фотоплёнки) на время, в течение которого свет воздействует на этот слой. Выражается в лк×с (люксах на секунды).

Экспозиция должна быть такой величины, чтобы позволить фотоматериалу с заданной чувствительностью получить нужное количество света для регистрации изображения с пропорциональным воспроизведением яркостей, таким же как у объекта съёмки. Светочувствительность — это сенситометрическая характеристика любой светочувствительной матрицы или фотоплёнки. Чем больше светочувствительность (ISO 50/100/200/400/800/1600/3200/6400/12800) матрицы (фотоплёнки), тем меньшая требуется экспозиция. Численное значение временной выдержки светового воздействия и численное значение открытой диафрагмы объектива фотоаппарата определяют экспозицию или величину фотоэффекта, происходящего под действием света в фотослое. Экспопара (значения выдержки и диафрагмы) — технический синоним термина экспозиция, часто употребляемый практикующими фотографами. В некоторых современных видах оборудования (например, SIMD-матрицы, камеры светового поля (англ. Light Field) и Foveon X3) представление об экспозиции (а также о выдержке и диафрагме) можно относить не только к фотоматериалу или устройству в целом, но и к отдельным его элементам и сочетаниям элементов.

 

Дисторсия

Дисто́рсия (от лат. distorsio, distortio — искривление) — аберрация оптических систем, при которой линейное увеличение изменяется по полю зрения. При этом нарушается подобие между объектом и его изображением.

Дисторсия
Идеальное без дисторсии, с «подушкой» и «бочкой».


Исправляется подбором линз и других элементов оптической системы при её разработке. Если присутствует в цифровом изображении, может быть исправлена программно.

 

Анаглиф

Ана́глиф (от греч. anáglyphos — рельефный) — метод получения стереоэффекта для стереопары обычных изображений при помощи цветового кодирования изображений, предназначенных для левого и правого глаза. Для получения эффекта необходимо использовать специальные (анаглифи́ческие) очки, в которых вместо диоптрийных стёкол вставлены специальные светофильтры, как правило, для левого глаза — красный, для правого — голубой или синий. Стереоизображение представляет собой комбинацию изображений стереопары, в которой в красном канале изображена картина для левого глаза (правый её не видит из-за светофильтра), a в синем (или синем и зелёном — для голубого светофильтра) — для правого. То есть каждый глаз воспринимает изображение, окрашенное в противоположный цвет.
 

Фокусное расстояние

Фо́кусное расстоя́ние — физическая характеристика оптической системы. Для центрированной оптической системы, состоящей из сферических поверхностей, описывает способность собирать лучи в одну точку при условии, что эти лучи идут из бесконечности параллельным пучком параллельно оптической оси.

Для системы линз, как и для простой линзы конечной толщины, фокусное расстояние зависит от радиусов кривизны поверхностей, показателей преломления стёкол и толщин.

Определяется как расстояние от передней главной точки до переднего фокуса (для переднего фокусного расстояния), и как расстояние от задней главной точки до заднего фокуса (для заднего фокусного расстояния). При этом, под главными точками подразумеваются точки пересечения передней (задней) главной плоскости с оптической осью.

Величина заднего фокусного расстояния является основным параметром, которым принято характеризовать любую оптическую систему.

 
 

Уважаемые гости нашего сайта, если Вы считаете, что в этом списке не хватает каких-то терминов или определений - напишите в гостевую книгу или свяжитесь снами другим способом и приложим максимум усилий, чтоб ликвидировать этот пробел.

 

Рейтинг@Mail.ru

Valid XHTML 1.0 Transitional      
  Top